Introduction: Why Graphs?

Alan G. Labouseur, Ph.D.

Marist College 3NF Consulting, Inc.

alan.labouseur@Marist.edu Inc. alan@3NFconsulting.com

Daily Deluge of Data

Today, we are awash in a daily deluge of data.

- It's constantly growing.
- It's constantly changing.
- •Some is structured.
- •Some is unstructured.
- •Some is semi-structured.

Piling up data is easy.

Gaining insight from the data pile is hard.

This is one of many challenges of Big Data.

Structured Data

pid

doctor did is_treating

Some data is structured.

	(Tester)																
	poctor	1	is	treating	0	26	doctor	1	is	treating	42						
2	doctor	1	is	treating	2	27	doctor	1	is	treating	43	51	doctor	11	is	treating	26
3	doctor	1	is	treating	3	28	doctor	1	is	treating	44	52	doctor	11	is	treating	50
	doctor	1	is	treating	4	29	doctor	1	is	treating	51	53	doctor	12	is	treating	13
	doctor	1	is	treating	5	30	doctor	1	is	treating	54	54	doctor	12	is	treating	34
	doctor	1	is	treating	6	31	doctor	1	is	treating	59	55	doctor	12	is	treating	47
•	doctor	-	ie	treating	7	12	doctor	1	is	treating	68	56	doctor	16	is	treating	45
'	doctor	-		treating	,		doctor	2	is	treating	8	57	doctor	18	is	treating	29
*	doc cor	-	15	creating	9	**	doctor	2	10	treating	8		doctor	23	is	treating	29
9	doctor	1	15	treating	10	34	ouc con	-	**	creating	0	28					
10	doctor	1	is	treating	11	35	doctor	2	15	treating	33	59	doctor	23	15	treating	32
11	doctor	1	is	treating	12	36	doctor	2	is	treating	35	68	doctor	25	is	treating	36
12	doctor	1	is	treating	14	37	doctor	4	is	treating	9	61	doctor	27	is	treating	39
13	doctor	1	is	treating	15	38	doctor	4	is	treating	38	62	doctor	30	is	treating	58
14	doctor	1	is	treating	17	39	doctor	4	is	treating	50	63	doctor	33	is	treating	0
15	doctor	1	is	treating	18	40	doctor	4	is	treating	53	64	doctor	33	is	treating	46
16	doctor	1	is	treating	19	41	doctor	6	is	treating	22	65	doctor	33	is	treating	47
17	doctor	1	is	treating	20	42	doctor	6	is	treating	49	66	doctor	33	is	treating	49
18	doctor	1	is	treating	21	43	doctor	6	is	treating	57	67	doctor	33	is	treating	62
10	doctor	1	is	treating	24	44	doctor	8	is	treating	8	68	doctor	38	is	treating	56
	doctor	1	15	treating	25	45	doctor	8	is	treating	23	60	doctor	39	is	treating	48
	doctor	1	is	treating	27	46	doctor	8	is	treating	63		doctor	39	is	treating	50
-						~	doctor	9	10	treating	37	~	dactor	20	4.0	tranting	64
22	ooctor	1	15	treating	28	47	00000		**	creating	31	71	DOCTOR	39	15	treating	D-4
23	doctor	1	is	treating	30	48	doctor	9	15	treating	40	72	doctor	42	is	treating	52
24	doctor	1	is	treating	31	49	doctor	9	is	treating	47	73	doctor	47	is	treating	55
25	doctor	1	is	treating	41	50	doctor	11	is	treating	16	74	doctor	49	is	treating	64

[Un | Semi] structured Data

Some data is unstructured or semi-structured.

Graph Structured Data

Virtually all data (structured, unstructured, and semi-structured) can be modeled as a network.

A network, or **graph**, is a collection of dots ("vertices") and lines ("edges") connecting those dots.

A graph with six (6) vertices and seven (7) edges

A graph with 63 vertices and 62 edges

Graph Structured Data

Graphs can show multi-dimensional relationships that are difficult to see in other data models.

	doctor unknown	did integer	is_t unkr	reating own	pid integer											
1	doctor	1	is	treating	0	26	doctor	1	is	treating	42					
2	doctor	1	is	treating	2	27	doctor	1	is	treating	43	51	doctor	11	is treating	26
3	doctor	1	is	treating	3	28	doctor	1	is	treating	44	52	doctor	11	is treating	58
4	doctor	1	is	treating	4	29	doctor	1	is	treating	51	53	doctor	12	is treating	13
5	doctor	1	is	treating	5	30	doctor	1	is	treating	54	54	doctor	12	is treating	34
6	doctor	1	is	treating	6	32	doctor	1	is	treating	59	55	doctor	12	is treating	47
7	doctor	1	is	treating	7	32	doctor	1	is	treating	68	56	doctor	16	is treating	45
	doctor	1	is	treating	9	33	doctor	2	is	treating	9	57	doctor	18	is treating	29
9	doctor	1	is	treating	10	34	doctor	2	is	treating	8	58	doctor	23	is treating	29
10	doctor	1	is	treating	11	35	doctor	2	is	treating	33	59	doctor	23	is treating	32
11	doctor	1	is	treating	12	36	doctor	2	is	treating	35	60	doctor	25	is treating	36
12	doctor	1	is	treating	14	37	doctor	4	is	treating	9	61	doctor	27	is treating	39
13	doctor	1	is	treating	15	38	doctor	4	is	treating	38	62	doctor	30	is treating	58
14	doctor	1	is	treating	17	39	doctor	4	is	treating	50	63	doctor	33	is treating	0
15	doctor	1	is	treating	18	40	doctor	4	is	treating	53	64	doctor	33	is treating	46
16	doctor	1	is	treating	19	41	doctor	6	is	treating	22	65	doctor	33	is treating	47
17	doctor	1	is	treating	20	42	doctor	6	is	treating	49	66	doctor	33	is treating	49
18	doctor	1	is	treating	21	43	doctor	6	is	treating	57	67	doctor	33	is treating	62
19	doctor	1	is	treating	24	44	doctor	8	is	treating	8	68	doctor	38	is treating	56
20	doctor	1	is	treating	25	45	doctor	8	is	treating	23	69	doctor	39	is treating	48
21	doctor	1	is	treating	27	46	doctor	8	is	treating	63	70	doctor	39	is treating	50
22	doctor	1	is	treating	28	47	doctor	9	is	treating	37	71	doctor	39	is treating	64
23	doctor	1	is	treating	30	48	doctor	9	is	treating	40	72	doctor	42	is treating	52
24	doctor	1	is	treating	31	49	doctor	9	is	treating	47	73	doctor	47	is treating	55
25	doctor	1	is	treating	41	50	doctor	11	is	treating	16	74	doctor	49	is treating	64

The same data set shown at left as a graph, and at right as tables of rows and columns.

Big Data Challenges

Big Data is always Growing

- more sources
- $\boldsymbol{\cdot}$ more products and services
- more messages
- more transactions

Big Data is always **Changing** • adding, removing, and modifying connections

In other words . . . Big Data is always **Evolving**

Q: How do we gain insight from evolving networks?

Dynamic Graphs

A: We gain insight from evolving networks by treating them like Dynamic Graphs where vertices (dots) model entities and edges (lines) model relationships between entities.

The evolution of a network can be modeled as a **series of graphs** that represent that network at different points in time.

Dynamic Graphs are Everywhere

Understanding dynamic graph evolution enables applications in many areas, among them:

- $\boldsymbol{\cdot}$ Social and Business networks
- National Security
- Marketing
- \cdot Transportation
- \cdot Pharmacology
- Communications networks
- Financial networks
- $\boldsymbol{\cdot} \textbf{Social Contact analysis}$
- Sensor networks

How do we gain insight?

So Many Systems

So many tools.

Which can provide insight into evolving networks?

So Many Systems

Non-relational systems do not effectively address these challenges.

NoSQL schemes, **XML** files, **object** repositories, **document** collections, and **key-value** stores are too unstructured to be reliably queried and often require task-specific code to support accurate analysis.

None of these approaches embrace graph theoretic models. As a result, graph analytics requires custom programming.

Many Systems

Relational systems do not effectively address these challenges.

Relational database systems require breaking down graph structures into separate entities for vertices and edges.

Graph analysis in this scheme involves costly join and self-join operations (the vertices table to itself, through the edge table) for every "hop" from a source vertex to a destination.

A Few Systems

Current graph systems do not effectively address these challenges.

Today's **graph** systems are designed for **one operation** on **one graph** at a time.

Pregel (Google), Trinity (Microsoft), Giraph (open source), Neo4j (open source), GPS (Stanford), and others store and analyze one graph at a time, thus missing the complexity and subtlety inherent in network evolution.

No Systems?

It gets worse.

None of the aforementioned systems take advantage of commonalities in their data storage and processing. With petabyte-scale data, duplication is a deal-breaker.

If only there were a dynamic graph database that could conveniently and efficiently store series of large graphs while supporting diverse operators for queries, aggregates, indexing, and filtering.

- Conveniently and efficiently stores series of large graphs.
- Compresses graphs based on their commonalities.
- Supports diverse operators for graph, aggregate, indexing, and filtering.
- Accelerates complex queries on graphs using operators that share common results across graphs.

Summary

G* is a dynamic graph database system with many features.

- graph distribution
 - multi-core scale up
 - multi-server scale out
- deduplicated disk storage for very large graphs
- in-memory compact indexing
- shared computation
- easy use of sophisticated parallel graph-theoretic queries
- integrates with Relational databases and other stores

National Science Foundation WHERE DISCOVERIES BEGIN Analyzing evolving graphs enables applications in many areas.

- social media analysis
- network traffic threat assessment
- fraud detection
- marketing
- transportation
- epidemiology
- pharmacology
- . . . and many other areas

Browser Application

Snapshot Management

Deduplicated Graph Distribution

Parallel Graph Query Execution

Integrates with Other Systems Your Custom Application **ims**health INTELLIGENCE APPLIED. SQL Server ORACLE PostgreSQL REST API Server version gs.0.63 ht (c) 2014-2015 Alan G. Labouseur. All Rights Reserve 5 + 3× 2 B + + F B C Markdown 1 Cel Toobar. None G* Playpen

There's more to this story.

- Technical Overview
- Journal and conference publications
- Research and consulting available
- Try it live on 3NFconsulting.com

Alan G. Labouseur, Ph.D.

1-845-440-1102 phone

- www.Labouseur.com web www.3NFconsulting.com www.marist.edu/compscimath/faculty.html
- e-mail alan@Labouseur.com alan@3NFconsulting.com alan.labouseur@Marist.edu

The G^{*} *graph database: efficiently* managing large distributed dynamic graphs

